The Wavelength Matters
Susanne Reischauer¹,², Bartholomäus Pieber¹

¹ Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
² Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany

E-mail: susanne.reischauer@mpikg.mpg.de

The combination of photo- and nickel catalysis (metallaphotocatalysis) has emerged as a powerful strategy for carbon–carbon and carbon–heteroatom cross couplings. Key to the success are redox or photosensitization events between a nickel- and a photocatalyst (PC). These protocols rely on a few photocatalysts that can only convert a small portion of visible light (<500 nm) into chemical energy. The high-energy photons that excite the photocatalyst can result in unwanted side reactions. Dyes that absorb a much broader spectrum of light are not applicable due to their short-lived excited states. We demonstrate a self-assembling catalyst system that overcomes this limitation. Immobilization of a nickel catalyst on dye-sensitized titanium dioxide results in a material that catalyzes carbon-heteroatom and carbon-carbon bond formations. The modular approach of dye-sensitized metallaphotocatalysts (DSMPs) accesses the entire visible light spectrum and allows tackling selectivity issues resulting from low-wavelengths strategically. The concept overcomes current limitations of metallaphotocatalysis by unlocking the potential of dyes that were previously unsuitable.

Figure 1: Concept of dye-sensitized metallaphotocatalysts (DSMP) overcoming excited state lifetime limitations.

References: