Transforming bimetal zinc nickel oxide to oxysulfide photocatalyst with its exceptional performance to evolve hydrogen

Noto Susanto Gultom*, Hairus Abdullah and Dong-Hau Kuo
National Taiwan University of Science and Technology, Taiwan
*notosusantogultom@gmail.com

1. Introduction
Photocatalytic hydrogen production with semiconductor catalyst is one of the best techniques to produce green hydrogen gas. This research investigated the effect of sulfur content on phase transformation of bimetal zinc nickel oxide to oxysulfide, which simultaneously affected the performance on photocatalytic hydrogen production. Different amounts of sulfur precursor (0, 0.25, 0.5, 0.75 and 1 mmol) were added to the bimetal oxide during the hydrothermal synthesis. Our design of ZnNiOS had the exceptionally high photocatalytic activity as compared to single-phase oxide and sulfide.

2. Methods

3. Results & Discussion

4. Conclusions

✓ Bimetal ZnNiO has been transformed to oxysulfide (ZnNiOS) by adding sulfur during the hydrothermal.
✓ Sulfur not only affected the morphology and crystal structure, but also remarkably improved the hydrogen production rate.
✓ The highest hydrogen production rate of 15,000 μmol/gh was achieved by S-0.75, which was 333-fold than ZnNiO.